Norsk versjon
Deposit Area 814 - 042
(Last updated 12.okt.2017)

Name of Deposit Area : Ødegårdens Verk
(Object Id : 0814,042,00,00)

County : Telemark (08) Municipality : Bamble (0814)
Map 1:50000: Kragerø (1712-4) Map 1:250000: Arendal
Marking point: Longitude: 9.5572290 Latitude: 58.9610640
EU89-UTM Zone 32 (Coordinates IS confirmed)
X-coord: 532049 m. Y-coord: 6535850 m.

Main Type: Ferrous metals(Fe, Mn, Ti) Sub Type: Titanium
Element(s): Ti, Rutil
Activity: Exploration Reserves: 100000 thousand tons
Prod. method: Production:
Prod. status: Volume of dump:
Resource estimat. standard: Non compliant

Public: National Importance (reg. 26.05.2015)
Economical: Significant , (Confirmed 19.sep.2001 by Are Korneliussen)

Element/product Crude ore grade or quality
TIO2 2-4 %

From - To Activity Comments
1991 - 1991 Sampling Company/Institution :NGU
Drill-dust sampling, see Korneliussen & Furuhaug (1992)
1991 - 1991 Core drilling Company/Institution :NGU
Two boreholes, see Korneliussen & Furuhaug (1992)

Era: Paleozoic Period: Devonian
Dating: Method:
Genesis: Replacement/Metasomatism Form: Irregular
Main texture: Massive Min. distribution: Disseminated (<20 % ore minerals)
Main grain size: Fine grained (< 1 mm) Main alteration:
Strike/Dip: Direction:
Ti-deposit type(s)
Main type: Metasomatic Ilm/Mt-ratio:
Sub type: Rutile in scapolitite rock %TiO(Ore):
Titanium province: Arendal - Bamble %P2O5(Ore):
Host rock: %MgO(Ilm):
Main Ti mineral: Rutile %V2O3(Mt):
ppm U (Rutile):
Stratigraphic classification of host rock
Era: Proterozoic Period: Mesoproterozoic
Province: South Norwegian Basement Province
Geotec.unit: Bamble Complex
Tectonic complex:
Igneous complex:
Group: Formation:

Relationship Mineral Amount
Gangue mineral Scapolite Major mineral (>10%)
Gangue mineral Hornblende Major mineral (>10%)
Gangue mineral Albite Subordinate mineral (1-10%)
Gangue mineral Enstatite Subordinate mineral (1-10%)
Gangue mineral Phlogopite Subordinate mineral (1-10%)
Gangue mineral Apatite Subordinate mineral (1-10%)
Ore mineral Rutile Major mineral (>10%)
Ore mineral Ilmenite Subordinate mineral (1-10%)

Relationship Rock Origin
Host rock Ødegårdite Intrusive
Original rock :Gabbro
Metamorphic facies :Amphibolite
Wall rock Amphibolite Intrusive
Original rock :Gabbro
Metamorphic facies :Amphibolite

Information(s) in free text format
Free text
The dominant rock at the Ødegårdens Verk deposit is a rutile-bearing scapolite-hornblende rock which was first called ødegårdite by Brøgger (1934). During transformation of gabbro to the ødegårdite, metasomatic fluids have leached a series of elements from the gabbro, to be carried away by the hydrothermal system. The major silicate minerals in the remaining rock are scapolite (after plagioclase) and a hornblende with low iron content (after mafic silicates in the original gabbro/amphibolite). The rutile is formed from the titanium remaining when iron from ilmenite was carried away by the fluids. The contact relations to the surrounding metagabbro/amphibolite are complex due to the interactions between the metasomatising fluids and the gabbro/amphibolite. Rafts of incompletely scapolitized gabbro/amphibolite occur within the main ødegårdite zone. An intermediate stage with pronounced Na-metasomatism caused extensive albitisation of the ødegårdite as well as of other rocks in the area, and late hydrothermal activity resulted in the formation of numerous phlogopite - enstatite - apatite veins along fractures in the ødegårdite. Apatite in these veins was the target for a significant mining activity from 1872 to 1945. When the apatite mines were still operating the various rock types and varieties was detailed described by Brøgger (1934), who also pointed out the major element chemical variations associated with the scapolitisation process. Anyone who wants to study this deposit should carefully read Brøgger's extensive description from Ødegårdens Verk. For more detailed information of the scapolite and apatite from Ødegårdens Verk, see Liefting et al. (1993), Liefting & Nijland (1992), and Engvik et al. (2009, 2011). NGU investigated the Ødegårdens Verk deposit during 1989-1992. Firstly, the late NGU geologist Jens Hysingjord did reconnaissance sampling of scapolite-bearing rocks in the Bamble region, including Ødegårdens Verk (Hysingjord 1990). Several possible product possibilities for the use of scapolite were considered, including potential usage of expanded scapolite in the form of a lightweight porous "scapolite glass" (S. Olerud, pers. comm.), see also Paulsen (1990, 1993). Hysingjord recognised that the rutile content of the scapolite-rich rock (the ødegårdite) could be of economic interest. Drill-dust sampling was done to investigate the rutile-bearing rock in some more detail, and the relatively scattered exposures in the deposit area were sampled (Korneliussen & Furuhaug 1993). It was realised that this sampling did not give a sufficient overview of the situation since the rutile-bearing rock (ødegårdite) had a low resistance to erosion and tended to occur in depressions in the terrain. The gabbro/amphibolite, on the other hand, preferentially stood up as exposures due to higher resistance to erosion. In the metasomatic process leading to the formation of the ødegårdite, Fe-bearing minerals such as magnetite and ilmenite break down as iron is transported away by the hydrothermal fluids. Therefore, the rutile-bearing ødegårdite is a rock with very low magnetic susceptibility compared with the magnetite- and ilmenite-bearing protolith. Magnetics might then be a powerful method to map the ødegårdite, and a ground magnetic survey was carried out (Lauritsen 1992). To be able to investigate the mineralogical and chemical character of the ødegårdite and the contact relations between the ødegårdite and the gabbro/amphibolite, two core boreholes were drilled (Korneliussen & Furuhaug 1993). This was later followed up by a detailed study by Sandøy (1995) of the transition from metagabbro/amphibolite to ødegårdite. The ødegårdite zone is at least 1200m long, and continues into farm land north-eastwards where it has not been investigated. A rough tonnage calculation is as follows: 1200 m (length) x 100 m (estimated average width) x 300 m (possible depth) x 2.8 (tons/m3) will give a deposit of approximately 100 million tons. Due to the significant overburden drilling is necessary to give a precise definition of the size of the deposit. Chip-samples of ødegårdite from mine tailings in the north-eastern and the central part of the deposit contains 2-4 % rutile. The rutile portion of the TiO2-content within the ødegårdite rock varies considerably, although in general it tends to be in the range 80-90 %. Alteration of rutile to titanite is a common phenomenon. Although a relative small portion of the rutile is altered to titanite, the presence of titanite might lead to high CaO-content in rutile concentrates made from this ore, which is a considerable disadvantage. As pointed out by Korneliussen et al. (1999) rutile from Ødegården (as well as from Lindvikkollen) is enriched in uranium (50-100 ppm U in rutile separates analysed by the neutron activation analytical method); in contrast, rutile from eclogite rocks is practically free of this element (< 1 ppm U). REE-bearing apatite would be a by-product in case of rutile mining at Ødegården.

From NGU's Reference Archive:
Bugge, Arne , 1924
Om Ødegårdens apatitgruber
;Norsk geologisk forening;TIDSSKRIFTARTIKKEL; FOREDRAG;Norsk geologisk tidsskrift; No.7 (3-4);393-396 pages

Bugge, Arne , 1922
Ødegården gruve. Gruvekart 1:1 000
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 2612

Griffin, W.L.; Åmli, R.; Heier, K.S. , 1972
Whitlockite and apatite from lunar rock 14310 and from Ødegården, Norway.
;TIDSSKRIFTARTIKKEL;Earth and planetary science letters; No.15;53-58 pages
Microprobe analyses show that whitlockite from lunar rocks is enriched in REE relative to the associated apatite, whereas a terrestrial whitlockite is severely depleted in REE relative to the associated apatite. After considering other possibilities, we suggest that the lunar whitlockite originally crystallized as the high-T polymorph, which is capable of taking up excess CaO (and REE?). Inversion to the low-T form has been inhibited by the non-stoichiometry, so that the present "whitlockite" phase is poorly crystalline. Similar relations may exist in terrestrial basalts of low water content, but would be easily overlooked in petrographic studies.

Korneliussen, A.; Furuhaug, L. , 1993
Ødegården rutilforekomst: En rutilførende skapolittomvandlet gabbro ved Ødegårdens Verk, Bamble
;Norges geologiske undersøkelse;FAGRAPPORT;NGU-rapport; No.93.078;46 pages
Ødegården rutilforekomst utgjør en langstrakt sone av rutilførende skapolitt- hornblende bergart (ødegårditt) som gjennomsettes av opptil 1 m mektige ganger av en flagopitt - enstatitt - apatitt bergart. Forekomsten er 100-150 m bred, steiltstående og minst 1200 m lang. Rutilgehalten varierer stort sett i området 1-4%; den delen av forekomsten som ligger nærmest Ødegården synes å ha noe høy- ere gehalt (2-4% rutil) enn de mindre de midtre og sydvestlige deler (1-3% rutil). Den var ved begynnelsen av dette århundret gjenstand for en relativt betydelig gruvedrift på apatitt. Forekomsten er dannet ved metasomatisk omvandling av en gabbrobergart i en periode i områdets geologiske utvikling som var karakterisert av omfattende hydrotermalomvandling, anslagsvis for 1100 millioner år siden. Gjennomstrøm- ming av Cl-rike løsninger har forårsaket en omfattende skapolittomvandling av plagioklas i den opprinnelige gabbroide bergarten. De fleste elementer har under denne prosessen vært mobile, og bergartens kjemiske sammensetning er betydelig forandret. Under denne hydrotermale prosessen er jern utlutet fra ilmenitt og transportert ut av bergarten av de hydrotermale løsninger, mens titan sitter tilbake i form av rutil. De påviste rutilgehalter er sannsynligvis for lave til å kunne gi grunnlag for økonomisk utnyttelse i dagens situasjon. De langsiktige markesutsiktene for rutil er imidlertid gode, og forekomsten er avgjort en ressurs som kan få økon- omisk betydning i framtiden. Apatitt og flogopitt er aktuelle som biprodukter.

Korneliussen, Are; Furuhaug, Leif , 2000
On the rutile deposit Ramsgrønova, Orkheia, Ødegården and Lindvik- kollen, S. Norway
;Norges geologiske undersøkelse;FAGRAPPORT;NGU-rapport; No.2000.123;35 pages

Lauritsen, Torleif , 1992
Magnetiske bakkemålinger ved Ødegården Verk, Bamble, Telemark
;Norges geologiske undersøkelse;FAGRAPPORT;NGU-rapport; No.92.218;15 pages
Denne rapporten presenterer resultatene av magnetiske bakkemålinger utført ved Ødegården Verk, og resultatene fra susceptibilitetsmålinger på ulike prøver fra området. Målingene var ment som et hjelpemiddel ved kartlegging av skapolitt-/rutilførende ødegårditt. Målinger på borkaksprøver har gitt indikasjoner på en positiv korrelasjon mellom høyt rutilinnhold og lav sus- ceptibilitet. Susceptibilitetsmålinger på borkjerner og håndstykker viser at ødegårditt gir jevnt over lave verdier, mens metagabbro og amfibolitt gir høy magnetisk susceptibilitet. Et lavmagnetisk område med bredde ca. 200 m og lengde ca. 1200 m i strøkretning er detektert sentralt i området.

Lieftink, Dick J.; Nijland, Timo G.; Maijer, Cees , 1993
Cl-rich scapolite from Ødegårdens Verk, Bamble, Norway
;Norsk geologisk forening;TIDSSKRIFTARTIKKEL;Norsk geologisk tidsskrift; No.73 (1);55-57 pages
Scapolites from a rutile-phlogopite-scapolite rock associated with the apatite-phlogopite-enstatite veins at the old Ødegårdens Verk, Bamble, South Norway appear to be the most Cl-rich variety hitherto reported. Besides Cl(3.74-3.91 wt%, 0.92-0.94 atoms per formula unit), So3 (0.57-0.81 wt%) and Br (328 ppm) are present. Together the scapolites indicate a revision of the solid solution line between approximately Si7.2Al4.8Cl0 and Si8.3Al3.7Cl1. This is explained by coupling the scapolite substitution CaAl·CaCo3=NaSi·NaCl to the Al=Si substitution.

Lieftink, Dick J.; Nijland, Timo G.; Maijer, Cees , 1994
The behaviour of rare-earth elements in high-temperature CI-bearing aqueous fluids: results from the Ødegården Verk natural laboratory.
;TIDSSKRIFTARTIKKEL;Canadian mineralogist; No.32;149-158 pages
The apatite from the ancient mines at Ødegården, northeast of Kragerø, South Norway, is known to be chlorapatite. Alteration during metamorphism involved the replacement of chlorapatite by hydroxyapatite and rare-earth phosphates, while hornblende developed elsewhere in the veins and in the country rocks. Ti-in-hornblende thermometry indicates ca. 700 dgrs C Cl-bearing aqueous solutions. La, Ce, Dy, Y, Na and Fe are leached from apatite, together with Cl. Coleaching of REE and Na indicates their coupled substitution in apatite. A different behavior is indicated for heavy and light REE, the latter being less depleted in Cl-poor apatite. Relatively more LREE precipitated as monaznite than HREE as xenotime. The HREE-bearing complexes with Cl seem to have been more stable under the conditions described.

Morton, R.D.; Catanzaro, E.J. , 1964
Stable chlorine isotope abundances in apatites from Ødegårdens Verk, Norway.
;Norsk geologisk forening;TIDSSKRIFTARTIKKEL;Norsk geologisk tidsskrift; No.44 (3);307-313 pages
35Cl/37Cl ratios have been determined in five Pre-Cambrian apatites from Ødegårdens Verk in South Norway. The apatites selected for analysis were of two principal varieties, namely chlorapatites with wt. % Cl 6.02-6.24 and apatites containing only 1.67 wt. % Cl. The chlorine-poor apatites have obviously been derived by metasomatism of the former group. Three chemical analyses of the apatites are presented. In none of the samples studied was any variation in the stable chlorine isotope abundances detected; the average 35Cl/37Cl ratio in the samples being 3.129 ± 0.002, compared with a reference isotope standard ratio of 3.128 ± 0.002. These results compare favourably with those of previous workers and serve to support the thesis that isotopic fractionation of the stable chlorine isotopes is rarely, if ever, effected during normal processes of mineral formation.

Morton, Roger D. , 1961
Contributions to the mineralogy of Norway. No. 9. On the occurrence of two rare phosphates in the Ødegården Apatite Mines, Bamble, South Norway 1. A variety of Woodhouseite. 2. Whitelockite.
;Norsk geologisk forening;TIDSSKRIFTARTIKKEL;Norsk geologisk tidsskrift; No.41 (2/4);233-246 pages
A description is given of varieties of woodhouseite and whitlockite found in specimens from the apatite-rich veins cutting the Precambrian rocks at Ødegårdens verk, Bamble, S.Norway. The minerals occur, together with quartz, in pockets within a matrix of chlor-hydroxy-oxyapatite. Physical and optical data are given for both minerals, together with x-ray powder diffraction data. A semi-quantitative spectrographic analysis of the whitlockite is included.

Morton, Roger D. , 1960
The Ødegården phosphate deposits.
;Norges geologiske undersøkelse;EKSKURSJONSGUIDE; TIDSSKRIFTARTIKKEL;NGU; No.212o;13-16 pages

Oftedal, Ivar , 1939
Vanadium in dem Apatitvorkommen von Ødegården in Bamble
;Norsk geologisk forening;TIDSSKRIFTARTIKKEL;Norsk geologisk tidsskrift; No.19 (4);340-341 pages
Frie emneord: Vanadium

Sandøy, Roar , 1995
A description of the mineralogical and geochemical alteration from gabbro to scapolitized rock (Ødegårditt) from Ødegaarden in Bamble, Telemark.

Smith, H. H. , 1928
Rapport over apatittforekomstene ved Ødegaarden Verk, Bamble
;Norges geologiske undersøkelse;FAGRAPPORT;Bergarkivet; No.BA 6066;16 pages
Befaringen ble foretatt etter anmodning av driftsbestyrer Erland Eide ved Ødegaarden Verk. Hensikten med befaringen har vært å gi en geologisk-økon- omisk vurdering av apatittforekomstene ved Ødegaarden tanke på videre drift. Apatitten forekommer i en skapolitthornblendeskifer-bergart som stryker SV-NØ og som er omgitt av gabbro, amfibolitt, granitt og kvart- sitt. Feltet gjennomsettes av en rekke pegmatitter og hovedtyngden av gruve- driften har hittil vært på grensen til to av disse. Malmen forekommer i en lengde på 1600 m, og bredden på feltet er 135-150 m. Et område på 48400 m2 kan med sikkerhet sies å være lovende. Malmprosenten antas å ligge mellom 25-45% og det kan gi en produksjon på 6000 tonn/år. Samlede brytningsutgifter er beregnet til kr. 9,05 pr. tonn. For levering f.o.b. Valla vil ett tonn høyprosentlig (70%) apatitt koste kr. 23,44 med den brytnings- og oppførings- plan som er satt opp. Ved å gå bort fra håndvasking og anskaffe nytt maskin- anlegg vil man kunne levere for kr. 27,50 f.o.b. Valla.

Bamble gruber. Ødegården. Geologisk kart
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 280

Ødegården gruve. Geologisk kart med gruver og daganlegg 1:4 000
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 2610

Ødegården gruve. Geologisk kart med gruver og daganlegg 1:400
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 2611

Ødegården gruve. Vertikalprofil av gruva 1:1 000
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 2613

, 1961
Ødegårdens apatittgruver, Bamble, Telemark fylke.
;Norges geologiske undersøkelse;FAGRAPPORT;Bergarkivet; No.BA 5625;1 pages
Drift på apatitt ble opptatt i 1872 på en del av feltet av et fransk sel- skap. Ødegarden var en tid et av de større bergverksanlegg i landet, i 1880 var ansatt 350 arbeidere. Driften avtok imidlertid i omfang, i 1885 var antallet av arbeidere 86, og driften ble innstilt i begynnelsen av 1890- årene. På en annen del av feltet ble driften opprettholdt av firmaet Johan Dahll i Kragerø. I året 1910 ble Ødegården Apatittgruver overtatt av Håkon Mathiesen. I 1915 fikk bedriften navnet Bamble Apatitt A/S. Drift fant sted til og med 1926. I 1941 ble driften gjenopptatt av ny eier, direktør Adam Petterson. Driften ble innstilt i 1945.

Ødegården gruve. Vertikalprofil av gruva 1:1 000
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 2613

Ødegården gruve. Geologisk kart med gruver og daganlegg 1:4 000
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 2610

Bamble gruber. Ødegården. Vertikalprofil 1:1 000
;Norges geologiske undersøkelse;KART;Bergarkivet; No.K 279

Sandøy, Roar , 1995
A description of the mineralogical and geochemical alteration from gabbro to scapolitized rock (Ødegårditt) from Ødegaarden in Bamble, Telemark.

Korneliussen, Are; McEnroe, Suzanne A.; Nilsson, Lars-Petter; Schiellerup, Henrik; Gautneb, Håvard; Meyer, Gurli B.; Størseth, Leif Roger , 2000
An overview of titanium deposits in Norway
;Norges geologiske undersøkelse;TIDSSKRIFTARTIKKEL;NGU Bulletin; No.436;27-38 pages
Titanium deposits in Norway are of three major types: igneous, metasomatic and metamorphic. The igneous deposits are compared of ilmenite, magnetite and apatite in various proportions and occur in geological provinces of different ages. and some have a metamorphic overprint. The other majord Ti ore-types is the rutile-bearing eclogites in western Norway that formed during the Caledonian high-pressure metamorphism of predominantly Proterozoic basic igneous rocks. The third Ti ore-Type is the Proterozoic rutile-bearing, scapolitised and albitised rocks in the Bamble region of South Norway.

References not to be found in NGU's Reference Archive.:
Bugge, J.A.W. 1978: In Mineral deposits of Europe; vol. 1, Northwest Europe Bowie, S.H.U., Kvalheim, A., Haslam, H.W., Notholt, A.J.G., Jones, M.J. (eds.), Norway. Inst. Min. and Metall., London, 199-249.

Paulsen, O. (1993): Smelting av skapolitt. SINTEF Avd. for Metallurgi, report STF34 F90194, available at NGUs library, 11 p.

Sem, G. 1987: Ødegårdens Verk. Bamble historielag. Alf Jacobsens Boktrykkeri, Brevik. 180 s.

Engvik A.K., Golla-Schindler U., Berndt J., Austrheim H., Putnis A. (2009): Intragranular replacement of chlorapatite by hydroxy-fluor-apatite during metasomatism. Lithos 112, 236-246.

Engvik A.K., Mezger K., Wortelkamp S., Bast R., Corfu F., Korneliussen A., Ihlen P., Bingen B., Austrheim H. (2011): Metasomatism of gabbro ¿ mineral replacement and element mobilization during the Sveconorwegian metamorphic event. Journal of Metmorphic Geology, 29, 399-423.

Korneliussen, A., Bjerkgård, T. & Often, M. (2012): N005 Bamble Ni-Cu, Fe-Ti. In Eilu, P. (ed.) Mineral deposits and metallogeny of Fennoscandia. Geological Survey of Finland Special Paper 53, p. 50-52.

The fact sheet was created on 26.05.2019

Questions or comments regarding the fact sheet can be emailed to:
or to
Copyright © 2019 Geological Survey of Norway